# Interdisciplinary Development of Maritime Education and Training Orienting to Career Planning in the era of Artificial Intelligence



Ruolan ZHANG 1a (Doctor/ Research Associate/ MA supervisor)
Weifeng XU 2a (Engineering bachelor student)
Lingfeng LI 3a (Engineering bachelor student)

#### Introduction

Artificial intelligence (AI) potential impact on the future of maritime transportation has been extensively discussed in recent years, increased autonomy of the shipping industry is inevitable. This study investigated maritime students' and educators' perception of the impact of AI influence, and explore how to optimize the maritime education and training (MET) curriculum to increase their lifelong career ability.

We investigated the detail of research progress and development direction of the shipping industry in the era of AI, including review the latest developments of computer vision, human-computer interaction, path planning, autonomous decision-making, and control, as shown in figure.

From it, we think students will face more difficult and stressful courses in the future. In the next, we will conduct a survey on students to understand their thinking. Then in the context of smart ships, exploring to design curriculums that can enhance the student's lifelong professional abilities and student can accept.

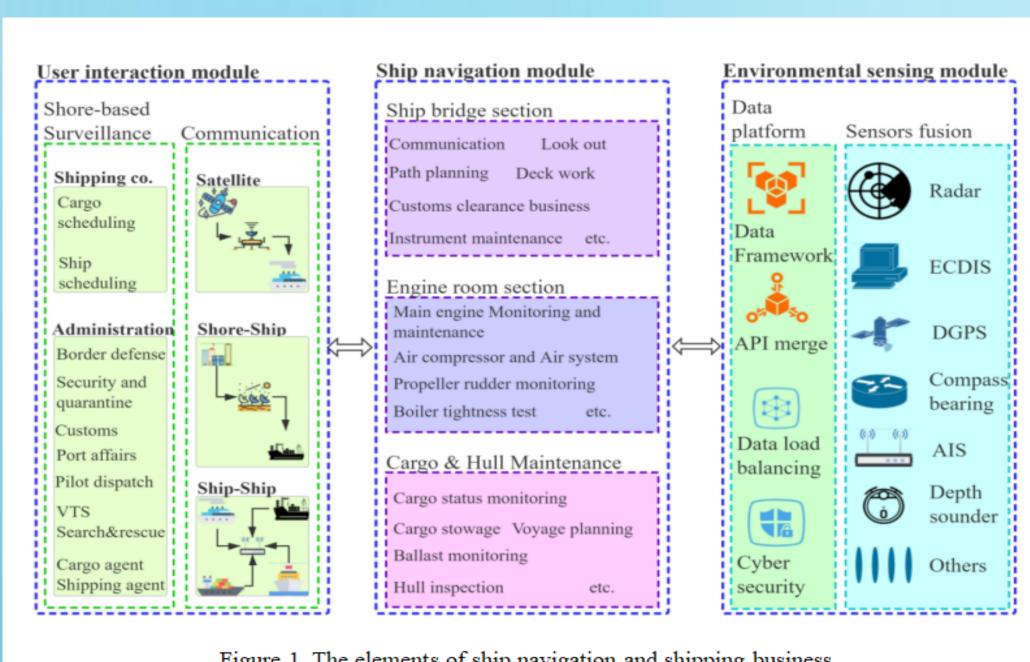



Figure 1. The elements of ship navigation and shipping business.

## Data analysis

Among 266 student respondents and 43 educator respondents, we use a fishbone diagram to analyze three factors that might influence maritime students to work onboard: social recognition; salary and company brand. Chi-square test have been used to analyze the differences between these three factors. For the statistical inference of large categorical data, the chi-square test has the advantage of convenient and simple than the T-test.

|       |                     | Pro                                                           | fessional catego               | ory    |            |       |     |  |
|-------|---------------------|---------------------------------------------------------------|--------------------------------|--------|------------|-------|-----|--|
| Title | Options             | Major in Marine (Marine Engineerin g, Navigation Technolog y) | maritime-<br>related<br>majors | others | Proportion | χ²    | p   |  |
|       | Very<br>satisfied   | 10.64%                                                        | 9.09%                          | 21.82% | 15.93%     |       |     |  |
| Salar | Fairly<br>satisfied | 51.06%                                                        | 36.36%                         | 60.00% | 53.98%     | 9.376 | 0.1 |  |
| у     | Less<br>satisfied   | 23.40%                                                        | 36.36%                         | 10.91% | 18.58%     | 9.3/0 | 54  |  |
|       | Dissatisfied        | 14.89%                                                        | 18.18%                         | 7.27%  | 11.50%     |       |     |  |

Table 1: The distribution of seafarers' salary satisfaction among the different majors currently involved.

|   |                    |                             | Profe                                                          | essional cate                  | egory  |                |          |         |  |
|---|--------------------|-----------------------------|----------------------------------------------------------------|--------------------------------|--------|----------------|----------|---------|--|
| 7 | Title              | Options                     | Major in Marine (Marine Engineer ing, Navigati on Technol ogy) | maritime<br>-related<br>majors | others | Proporti<br>on | $\chi^2$ | p       |  |
|   |                    | Very<br>Recogniz<br>ed      | 14.89%                                                         | 0.00%                          | 30.91% | 21.24%         |          |         |  |
|   | Social<br>ecogniti | Basically<br>recognize<br>d | 31.91%                                                         | 72.73%                         | 54.55% | 46.90%         | 26.294   | 0.000** |  |
|   | on                 | Not very<br>much            | 51.06%                                                         | 18.18%                         | 14.55% | 30.09%         |          |         |  |
|   |                    | Not<br>Recogniz<br>ed       | 2.13%                                                          | 9.09%                          | 0.00%  | 1.77%          |          |         |  |

Table 2: The distribution of seafarers' social recognition among the different majors currently involved.

|         |                     | Profe                                                          | ssional cate                   | gory   |            |             |         |
|---------|---------------------|----------------------------------------------------------------|--------------------------------|--------|------------|-------------|---------|
| Title   | Options             | Major in Marine (Marine Engineer ing, Navigati on Technol ogy) | maritime<br>-related<br>majors | others | Proportion | χ<br>2      | p ·     |
|         | Salary              | 65.96%                                                         | 54.55%                         | 47.27% | 55.75%     |             |         |
|         | Business<br>Scope   | 6.38%                                                          | 0.00%                          | 18.18% | 11.50%     | 2           |         |
| compan  | Promotio<br>n Speed | 10.64%                                                         | 18.18%                         | 1.82%  | 7.08%      | 4<br>0<br>5 | 0.007** |
| y brand | Promotio<br>n Space | 12.77%                                                         | 27.27%                         | 7.27%  | 11.50%     |             | 0.007** |
|         | Ship<br>condition   | 2.13%                                                          | 0.00%                          | 14.55% | 7.96%      | 1           |         |
|         | Other               | 2.13%                                                          | 0.00%                          | 10.91% | 6.19%      |             |         |

| Table 3: T | ne distribution of seafarers' company brand |
|------------|---------------------------------------------|
| among      | the different majors currently involved.    |

| Title                        | Options                       | Proportion       | $\chi^2$ | <i>p</i> ° |  |
|------------------------------|-------------------------------|------------------|----------|------------|--|
| The realization of           | Must<br>Possible              | 29.20%<br>58.41% |          |            |  |
| ocean-going                  | Impossible                    | 4.42%            | 2.631    | 0.854      |  |
| unmanned ships<br>navigation | Uncertain                     | 7.96%            |          |            |  |
| Davidanment                  | Human<br>involvement          | 50.44%           |          |            |  |
| Development directions       | Remote control                | 37.17%           | 9.084    | 0.059      |  |
| directions                   | Autonomous<br>driving         | 12.39%           |          |            |  |
|                              | Unfilled and other            | 12.38%           |          |            |  |
|                              | International rules           | 19.47%           |          |            |  |
| Current difficulties         | Autonomous<br>decision making | 19.47%           | 15.365   | 0.222      |  |
|                              | Port construction             | 5.31%            |          |            |  |
|                              | Cabin Watch                   | 17.70%           |          |            |  |
|                              | Information<br>Perception     | 25.66%           |          |            |  |

Table 5: Kaiser-Meyer-Olkin (KMO) test, effectiveness analysis

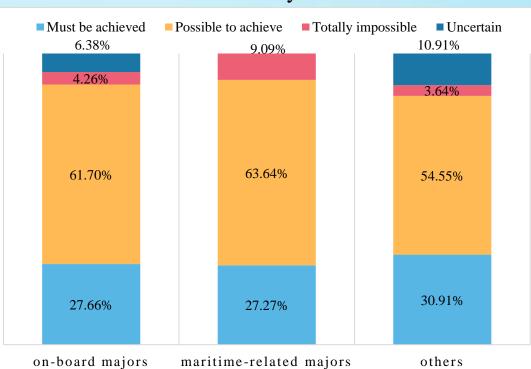



Figure 7. Unmanned ships implementation attitudes from the different majors' students

| KMO & Bartlett test       |                         |        |  |  |
|---------------------------|-------------------------|--------|--|--|
| KMO value                 | 0.773                   |        |  |  |
|                           | Approximate cardinality | 67.024 |  |  |
| Bartlett sphericity check | df                      | 10     |  |  |
|                           | p value                 | 0      |  |  |

Table 4: Major in Marine's (Marine Engineering, Navigation Technology) views on unmanned ships

|                                             | independent variables | Non-independent variables |  |  |  |
|---------------------------------------------|-----------------------|---------------------------|--|--|--|
| V1. Course actoromy                         | 0.672                 | 0.455                     |  |  |  |
| X1: Course category                         | -0.79                 | -0.405                    |  |  |  |
| X2: Course difficulty                       | -0.302                | 2.175*                    |  |  |  |
| ·                                           | (-0.481)              | -1.971                    |  |  |  |
| X3: Future development correlation          | 1.08                  | 0.974                     |  |  |  |
|                                             | -1.554                | -1.064                    |  |  |  |
| Intoncent                                   | -1.437                | -7.751**                  |  |  |  |
| Intercept                                   | (-0.976)              | (-2.837)                  |  |  |  |
| Likelihood ratio test                       | $\chi^{2}(6)=$        | 16.942, <i>p</i> =0.009   |  |  |  |
| Y: Dependent variable: willingness to learn |                       |                           |  |  |  |
| McFadden R-squared: 0.211                   |                       |                           |  |  |  |
| Cox & Snell R-squared: 0.332                |                       |                           |  |  |  |
| Nagelkerke R-squared: 0.39                  | 0                     |                           |  |  |  |
| * p<0.05 ** p<0.01 z-values                 | in parentheses        |                           |  |  |  |

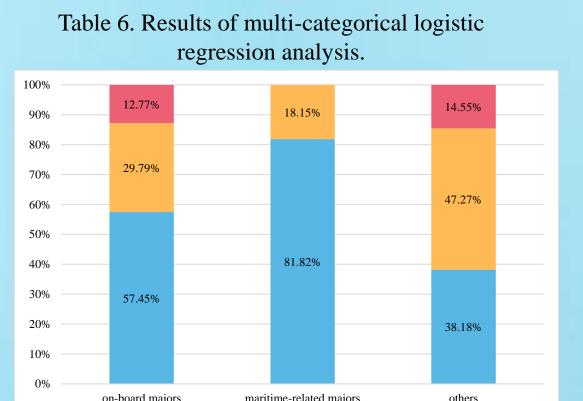



Figure 8. Intelligent shipping industry attitudes from the different majors' students

#### Conclusion

Through analyzing the interviews and questionnaires, we obtained the following consequences.

- 1) Consensus: the shipping industry will undergo a great change under the influence of AI.
- 2) Interview & investigation: the development of intelligent ships will affect the seafarer occupation, which may decrease in quantity and will increase in required quality.
- → 3) MET curriculum: MET courses outdated

### Discussion

#### Curriculum design

- 1) Heightening the frequency for textbook updating to reduce problems caused by textbook lag among the educated.
- 2) Increasing curriculum diversity, adding diversified compulsory and optional courses.
- 3) Sifting out and expurgating courses which are unfit for seafarer training and lagging in smart shipping development to reduce seafarers' pressure.
- 4) Offering more AI-related lectures, popularizing artificial intelligence knowledge, and uploading intelligent transportation public courses.

#### **Career orientation**

- 1) Gradually blur the boundaries of disciplines and cultivate integrated talents.
- 2) Update current discipline and incorporate new disciplines, cultivate new types of technical personnel.
- 3) Encourage learning outside of training and cultivate adaptable talents.